Vera Rubin’s Monster 3200-Megapixel Camera Takes its First Picture (in the Lab)

The next step is assembly of the entire camera. The focal plane and the cryostat[7] will be inserted into the camera body, along with its three lenses. One of those lenses, at 1.57 meters (5.1 feet) in diameter, is thought to be the world’s largest high-performance optical lens[8]. There’s also the shutter, and a filter exchange system. Altogether, the camera will be about the size of an SUV, and by 2021 it’ll be assemelbed and ready for final testing. After that, it’ll be shipped to Chile.
“Nearing completion of the camera is very exciting, and we’re proud of playing such a central role in building this key component of Rubin Observatory,” said JoAnne Hewett, SLAC’s chief research officer and associate lab director for fundamental physics. “It’s a milestone that brings us a big step closer to exploring fundamental questions about the universe in ways we haven’t been able to before.”

One of the things that makes the Vera C. Rubin Observatory so special is the fact that it images the same areas of the sky over and over in rapid succession. All of that activity is largely automated, too. This means that it’ll spot transient objects and will be able to alert other observatories to things like supernovae. That’ll allow powerful telescopes coming online soon, like the Extremely Large Telescope[9], to bring their power to bear on them in a way that the Rubin Observatory can’t.

All of this exquisite image data will also be accessible to the rest of us. In 2007, Google announced their involvement with the project. While the LSST’s data will be available to researchers in a more raw form, Google wants to use their data expertise to make LSST data more accessible to the public. They’re hoping to provide digital coverage of things like supernovae, asteroids, and distant galaxies.