Vera Rubin’s Monster 3200-Megapixel Camera Takes its First Picture (in the Lab)
“These data will improve our knowledge of how galaxies have evolved over time and will let us test our models of dark matter and dark energy more deeply and precisely than ever,” Ritz said. “The observatory will be a wonderful facility for a broad range of science – from detailed studies of our solar system to studies of faraway objects toward the edge of the visible universe.”

It’s taken the camera team several months to install the rafts onto the focal plane. The rafts are very expensive pieces of equipment. Each one can cost up to $3 million, and the tolerances in the installation are extremely tight. The space between each raft is less than five human hairs wide. The imaging sensors can also crack if they touch each other.
Hannah Pollek is a mechanical engineer at SLAC who worked on sensor integation. In a press release she said “The combination of high stakes and tight tolerances made this project very challenging. But with a versatile team we pretty much nailed it.”
To capture these first few images, the sensors were cooled to their operating temperature of -101 C (-150 F). Since the entire camera isn’t assembled yet, the team projected images onto the focal plane with a 150 micron pinhole[4]. Objects used for the test images, were a head of Romanesco broccoli, the Flammarion engraving[5], a photo of Vera C. Rubin[6] herself, a photo collage of LSST team members, and a photo collage of logos of LSST member institutions.
“Taking these images is a major accomplishment,” said SLAC’s Aaron Roodman, the scientist responsible for the assembly and testing of the LSST Camera. “With the tight specifications we really pushed the limits of what’s possible to take advantage of every square millimeter of the focal plane and maximize the science we can do with it.”